high pressure fan coils technical manual

High pressure Fan Coils

3 kW - 22 kW

INDEX

1	Main features	pag. 2
2	Versions and components	pag. 2
3	POSSIBLE CONFIGURATIONS	pag. 3
4	Available options	pag. 3
5	Rated technical data	pag. 4
6	Ventilation features	pagg. 5 / 6
6.1	Accessories: air pressure drop	pagg. 7 / 8
6.2	Sound power levels for octave band	pag. 8
7	Performances	
7.1	Cooling capacity	pagg. 9 / 10
7.2	Heating capacity	pagg. 11 / 12
7.3	DF coil heating capacity	pag. 13
8	Installation suggestions	pag.15
9	Dimensional data	pagg. 16 / 17
10	Wiring diagrams	pagg. 18 / 22
10.1	Motors electrical data	pag. 23
11	Accessories	pagg. 23 / 26

OPERATING LIMITS

Thermal carrier: water

Water temperature: $+5^{\circ}\text{C}$ to $+95^{\circ}\text{C}$ Air temperature: -20°C to $+43^{\circ}\text{C}$ Power supply voltage: 230 V +/-10 % Max. pressure of primary fluid: 10 bar

1 MEAN FEATURES

The new range of UTN high pressure fan coils units has been designed for conditioning rooms that require the installation of ducted units.

Proposed in 14 models with air flows from $600 \text{ to } 4000 \text{ m}^3/\text{h}$, the UTN units are characterized by a wide applicative flexibility thanks to the special constructive solutions.

- > possibility of installation both in horizontal and vertical position thanks to the special conformation of the condensate discharge system;
- > the air intake direction may be modified during installation;
- > reduced height (280 mm up to model 16A);
- > pre-shared element for the recycle of external air, standard on all models $(\Phi\ 100\ mm)$;
- > wide range of accessories for effectively.

2 VERSIONS AND COMPONENTS

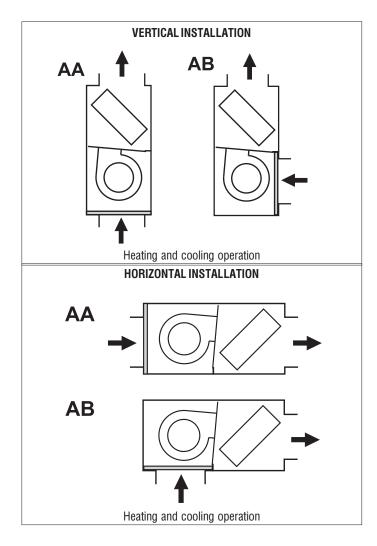
Versions

UTN air handling unit setup for 2-pipe systems

UTNDF air handling unit setup for 4-pipe systems (2 heat exchangers)

N.B. both version may be manufactured, on request, with pre-painted panels.

Components


Load-bearing structure made of galvanized steel sheet of suitable thickness, duly insulated with noise-proof/anticondensing material, self-estinguishing in Class 1; the insulating material is characterized by a thickness of 10 mm and a density of 90 Kg/m³.

The unit is completed by the following:

- inspections panels;
- setup for external air intake;
- fast-coupling slots.
- Dual intake centrifugal fans made of alluminium, with statically and dinamically balanced impellers, coupled directly to the electric motor.
- > 3 speed electric motor, equipped with permanently fit condenser and thermal safety device, installed on vibrator damping supports.
- Heat exchanger: high efficiency, made of copper tube and alluminium fins secured to the tubes by mechanical expansion. It is fitted with brass manifolds and air valves. The heat exchanger, normally supplied with left hand attachments, may be turned by 180°.
- System for collecting and discharging condensate setup either for horizontal or vertical installation.
- > Terminal strip for fast on electrical connections.

3 POSSIBLE CONFIGURATIONS

4 **AVAILABLE OPTIONS**

The wide and complete range of accessories completes the UTN air handling units as far as operation is concerned, adapting these units to any plantengineering requirements, from the solution with rectangular section channels to the one with round flexible ducts.

The standard	machines are supplied without control panel and without air
filter.	
	CONTROL PANELS AND THERMOSTATS
CD	Flush wall-mounted speed selector
CDE	Wall-mounted speed selector
TD	Wall-mounted control with speed selector,
	electromechanical thermostat and summer/winter
	selector
TDC	Wall-mounted control with speed selector and
	electromechanical thermostat
TD4T	Wall-mounted control with speed selector,
	electromechanical thermostat and summer winter
	selector for 2/4 pipe systems with valves
MCB	
MCM	
MOL	
MCL	
I EDEUS	
INICOVAL	
MCGIIE	
MUSUL	
TC	
IPM	
MCB MCM MCL LED503 MCSWE MCSUE TC	Wall-mounted microprocessor control - GALLETTI model MYCOMFORT BASE Wall-mounted microprocessor control - GALLETTI model MYCOMFORT MEDIUM Wall-mounted microprocessor control - GALLETTI model MYCOMFORT LARGE Recess wall-mounted microprocessor control Water probe for microprocessor controls model MYCOMFORT BASE, MEDIUM, LARGE and LED503. Humidity sensor for on-board microprocessor controls model MYCOMFORT MEDIUM and MYCOMFORT LARGE. Fan stop thermostat: electromechanical thermostat for minimum water temperature during heating mode Power interface for MYCOMFORT and LED503

IPM TA Electromechanical room thermostat TA₂ Electromechanical room thermostat with summer/winter

CSD Wall-mounted control for proportional opening and

closing of the motor driven air intake louver AIR SUCTION MODULES WITH FILTERS

MAF Air suction module with flat filter G2 Air suction module with waved filter G4 **MAFO CONNECTION PANELS**

Connecting panel to rectangular ducts

PCOF Connecting panel to flexible ducts ϕ 200 3-WAY VALVES AND DRIP TRAYS V 3 way valve (possibility of motor driven) M Electrothermal motor for motor driven valve Hydraulic connection mounting kit

VRCV Auxiliary drip tray for vertical installation units **VRCH** Auxiliary drip tray for horizontal installation units

KSC Condensate removal kit

PCOC

GA

HOT WATER POST HEATING COIL BP Hot water post heating coil module

ELECTRIC HEATERS

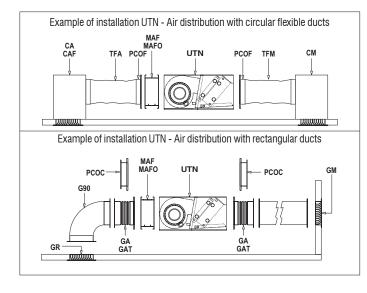
Electric heater, with safety thermostat and power relay RE

MOTOR DRIVEN FRESH AIR INTAKE LOUVER

PA90 Motor driven fresh air intake louver

VIBRATION DAMPERS PVC vibration damper

GAT Silicone cloth heat proof vibration dampers


FLEXIBLE DUCTS - CAPS Not insulated flexible ducts, ϕ 200 **TFA** TFM Insulated flexible ducts, ϕ 200 TP

Plastic caps ϕ 200

AIR INLET AND OUTLET PLENUM BOX CA Air inlet plenum box with double row grille

Air inlet plenum box with double row grille and filter G2 CAF Insulated air outlet plenum box with 2 way grille CM

AIR INLET AND OUTLET GRILLES GM Aluminium air outlet grille with counterframe Air suction aluminium grille with counterframe GR

RATED TECHNICAL DATA

UTN	Fan speed		06	06 A	0 8	08A	12	12A	16	16 A	22	22 A	30	30A	40	40A
Air flow	High	m³/h	600	600	800	800	1250	1250	1600	1600	2200	2200	3000	3000	4000	4000
Available static pressure	High	Pa	80	75	90	85	88	82	100	95	130	110	185	175	156	146
Total cooling capacity		kW	3,14	3, 79	3,90	4,80	6,20	7,00	7,80	8,82	11,90	13, 70	16,40	18,30	19,26	22,01
Sensible cooling capacity		kW	2,45	2,87	3,08	3,71	4,65	5,36	6,52	7,16	9,36	10,50	12,80	14,10	15,50	17,57
Water flow		l/h	540	650	669	824	1064	1201	1339	1514	2042	2367	2833	3140	3305	3777
Water pressure drop		kPa	12	10	17	15	24	20	24	16	26	22	34	45	23	23
Heating capacity	High	kW	6,70	7,90	8,20	9, 86	13,08	15,08	15,92	18,23	24,40	27,50	33,35	36, 81	41,30	46,18
Water flow		l/h	588	693	720	865	1147	1323	1397	1600	2141	2413	2925	3231	3623	4053
Water pressure drop		kPa	10	8	15	12	21	18	20	13	21	18	27	36	24	24
DF heating capacity (4 pipes)	High	kW	3,92	3,92	4,49	4,49	6,62	6,62	9,21	9,21	15,86	15,86	21,15	21,15	24,29	24,29
Water flow		l/h	344	344	394	394	581	581	808	808	1392	1392	1856	1856	2131	2131
Water pressure drop		kPa	7	7	9	9	15	15	13	13	12	12	16	16	15	15
Standard heat exchanger - rows		n°	3	4	3	4	3	4	3	4	3	4	4	5	4	5
Standard heat exchanger - hydraulic connections		in	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	1"	1"	1"	1"	1"	1"
Standard heat exchanger - water content			1,06	1,41	1,06	1, 41	1,42	1,90	1,79	2,38	2,50	3,34	4,02	5,03	4,70	5,88
DF heat exchanger - rows		n°	1	1	1	1	1	1	1	1	2	2	2	2	2	2
DF heat exchanger - hydraulic connection		in	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	3/4"	1"	1"	1"	1"	1"	1
DF heat exchanger - water content			0,35	0,35	0,47	0, 47	0,59	0,59	1,42	1,42	1,42	1,42	1,72	1,72	2,01	2,01
Power supply		V /ph/Hz							230 /	1 / 50						
Maximum current absorption		Α	0,718	0,718	0,954	0,954	1,575	1,575	1,971	1,971	3,210	3,210	5, 370	5,370	5,556	5,556
Maximum power input		W	175	175	234	234	349	349	443	443	714	714	1197	1197	1150	1150
Sound power		dB(A)	63	63	66	66	69	69	72	72	74	74	78	78	79	79
Sound power - air outlet component		dB(A)	59,3	59,3	62,5	62,5	65,2	65,2	68,9	68,9	70,7	70,7	74,5	74,5	75,4	75, 4
Sound power - transmitted component		dB(A)	54,7	54,7	58,0	58,0	60,3	60,3	64,0	64,0	65,7	65,7	69,4	69,4	70,4	70,4
Sound power - air inlet component		dB(A)	59,3	59,3	62,5	62,5	65,2	65,2	68,9	68,9	70,7	70,7	74,5	74,5	75,4	75,4
Weight 2 pipe models (UTN)		Kg	31,5	32,5	32,5	33,3	40,6	41,7	47,3	48,7	65,3	67,2	77,0	79,5	84,0	87, 0
Weight 4 pipe models (UTN DF)		Kg	33,7	34,7	34,7	35,5	43,2	44,3	50,3	51,7	70,9	72,8	83,4	85,9	92,0	98,5

The aforesaid performance is related to the following conditions.

Air flow:

- related to the rated usable static pressure, at max. speed

Cooling:

- rated air flow
- water inlet temperature 7°C
- water outlet temperature 12°C
- air temperature with dry bulb 27°C
- air temperature with moist bulb 19°C (47% relative humidity)

Heating:

- rated air flow
- water inlet temperature 80°C
- water outlet temperature 70°C
- air temperature 20°C

Sound power read conforming to EN 23741 and EN 23742.

Legend: Psu Available static pressure

Fan speed: **3**= high 2= medium 1= low Qa Air flow

NED	V.	ع	_	Ş	00	30	Q.	2	9	0,2	US	8	Psu [[Pa]	120	30	1/0	150	160	170	180	006	066	OV.
	3	m ^{3/h}	282	763	CVZ	23	009	878	652	2.2	8 8	27	+	208	787	3 8	7967	+	+	+	+	+	+	2
01N 06	٥	111/111 m³/h	7 65	573	747	534	512	0/0	467	½ 4	415	385	35.	316	771	73 42	/00°	707						
	-	m³/h	426	405	382	326	335	68	282	ES	222	82	£2 22	운	'		,	١.	1	1		,		١.
	3	m³/h	768	749	728	708	989	833	633	614	287	228	257	492	454	408	352	261	<u> </u>	ı	1	1		
UTN 06A	2	m³/h	583	564	545	525	504	482	459	434	407	378	346	306	265	506	1		1	ı	1	1	1	ı
	1	m³∕h	422	401	378	322	331	305	279	52	219	186	150	109	,	,	1	,	,	1	ı	1	,	ı
	3	m³/h	1002	385	963	942	921	668	9/8	821	978	799	771	740	707	67.1	623	581			,			,
NTN 08	7	u/₅m	850	831	811	16/	69/	747	724	669	673	645	615	285	545	205	448	369	519	411	1	ı	1	1
	1	m³∕h	265	583	699	553	537	250	205	483	462	439	413	383	345	ı	1	1	1	1	1	1	1	ı
	3	u/₂w	981	896	11/6	924	904	883	861	838	813	787	760	730	869	994	620	270	200	ı	1	1	1	1
UTN 08A	7	u/₅m	836	818	86/	6//	8 <u>4</u> 2	736	714	689	664	637	209	574	537	493	437	338	1	ı	1	ı	1	1
	1	m³/h	969	285	899	299	989	519	501	482	461	438	412	381	343	1	1	ı	1	ı	1	-		ı
	8	u/₅m	1840	1783	92/1	1664	1601	1535	1466	1393	1316	1233	1144	1046	282	812	829	438	1	ı	1	ı	1	1
UTN 12	2	u/₂w	1537	1491	1444	1395	1343	1290	1233	1174	1110	1043	696	888	797	069	555	332	1	ı	1	1	1	1
	1	m³/h	1284	1246	1207	1166	1124	1080	1033	983	931	874	812	744	999	2/3	450		1		1	-		
	3	m³/h	1787	1731	1673	1613	1551	1486	1417	1346	1269	1188	1100	1004	897	774	623	413	,	1	,		-	ı
UTN 12A	2	m³/h	1505	1459	1412	1362	1311	1257	1200	1141	1077	1009	335	853	761	663	515	-	1				-	
	1	m³/h	1259	1222	1183	1143	1101	1057	1011	3965	910	854	793	725	647	555	431	-						
	3	m³/h	2359	2296	2231	2164	2094	2021	1946	1866	1782	1693				1260	1116	942	969	ı	1		,	ı
UTN 16	2	m³/h	1834	1782	1728	1672	1614	1553	1489	1422	1351	1274	1191	1101	666	88	734	515	1	1	1	1	1	1
	1	m³/h	1495	1451	1405	1358	1308	1256	1201	1143	1081	1015	942	862	0//	991	515	1	1	1	1	1	1	1
	3	m³/h	2304	2242	2178	2112	2043	1972	1897	1819	1737			1457	1348	1227	1088	921	469	1	1	1	1	1
UTN 16A	2	m³/h	1819	1767	1713	1657	1599	1538	1474	1407	1335	_	1176	1085	385	863	715	490	1	1	1		1	1
	1	m³/h	1487	1443	1397	1349	1299	1247	1192	1134	1072	1006	883	852	760	920	503	,	1	1	ı	,	1	ı
	3	m³/h	3369	3299	3227	3153	3077	2998	2915	2830	2740	2646	2547		2328	2206	2070	1918	. 458	1516	1152	1	1	1
UTN 22	2	m³/h	2425	2365	2302	2237	2170	2101	2028	1952	1872	1787		1599	1492	1374	1238	1075	1	1	1	1	1	1
	1	m³/h	1747	1696	1645	1591	1535	1476	1415	1350	1282	1209	1130	1044	949	8€	708	527	1	1	1	1	1	1
	3	m³/h	3114	3047	2977	2905	2831	2753	2673	2589	2501	2408	2310	2205	2092	1967	1829	1670	1475	1200	1	1	1	1
UTN 22A	2	m³/h	2317	2258	2198	2135	2070	2002	1932	1858	1780	1698	1610	1515	1411	1296	1164	1003	782	1	1	1	1	1
	1	m³/h	1695	1646	1595	1542	1487	1430	1370	1307	1240	1168	1091	1007	913	908	9/9	498	1	ı	1		1	1
	3	m³/h	3532	3506	3480	3454	3427	3400	3373	3346	3318	3290		3232	3203	-	3143		-		-	-		2813
OE NII	2	m³/h	2876	2849	2822	2795	2767	2739	2710	2681	2651	-	-	-		-	-					-+		2081
	1	m³/h	2232	2207	2182	2157	2131	2105	2078	2021	2023	-	1965		1905	1874	1841	1808	1774	1739	1702	1625	1541	1447
,	3	m³/h	3500	3474	3448	3422	3395	3368	3341	3313	3285	3257	3228	3199	3170	3140	3110	3079	3048	_	2983	2917 2	2848 '	2777
UTN 30A	2	m³/h	2837	2810	2783	2756	2728	2700	2671	2642	2613	2582	2552	2521	2489	2456	2423	2389	_	2319 2	2283	202	2127	2042
	1	m³/h	2217	2192	2167	2141	2115	2088	2060	2033	2004	1975	1945	1915	1883	1821	1818	1784	1749	1713	_	1596	1508	1411
	3	m³/h	6011	5905	96/9	5686	5572	5456	5337	5216	5091	-		-	-		-							2015
UTN 40	2	m³/h	4694	4599	4502	4403	4302	4198	4092	3983	3872													1163
	1	m³/h	3795	3705	3613	3520	3424	3326	3226	3123	3017			-				-				-+		
	3	m³/h	5786	5683	5579	5471	5362	5250	5135	5017	4896													1920
OTN 40A	2	m³/h		4482	4387	4290	4190	4089	3984	3878	3768	_	_	_		_	_			_				1104
	-	m³/h	3717	3630	3540	3449	3355	3260	3162	3061	2958	282	2743	2631	2514	2393	2268	2137	5000	1826	1704	1367	296	1

Vr

Legend: Psu Available static pressure

Qa Air flow

Fan speed: 3= high 2= medium Vr

1= low

			1					1	_	1	1	1	_			_			1	_	-	_			<u> </u>	low	<i>'</i>		1	- 1	- 1	1	- 1							_			—
	240	-	1	1	1	1	1	1		ı	1	1	1	ı	ı	1	1	ı	1	1	1	1	1	1	ı	1	1	1	ı	1	ı	2792	2066	1438	2756	2027	1402	1923	1134	ı	1838	1077	1
	220	ı	ı	ı	ı	ı	ı	·	١.	٠		ı	1	ı	ı	ı	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	1	ı	ı	ı	2862	2152	1532	2828	2113	1500	2557	1679	996	2454	1616	953
	200	-	ı		-	1	-	-		-	-		-	-	-	-	-	-	ı		ı		1	1	-	ı	1	-	ı	ı	ı	2931	2231	1616	2896	2193	1587	3038	2100	1366	2919	2031	1345
	180		ı	ı	-	ı	-					ı	1		-	-	-	-	ı		ı		ı	ı	ı	1055	ı	1	ı	ı	ı	2996	2307	1694	2962	2268	1667	3440	2455	1704	3309	2380	1676
	170	-	ı	ı	1	ı	1	388	,			1	1		-			-	ı	1	ı	1	1	1		1448	1	1	1138	ı		3028	2343	1730	2995	2305	1704	3621	2616	1857	3485	2539	1826
	160	ı	ı	1	ı	ı	ı	208	,	1	487	1	1		1	1	1		ı	999	ı	,	664	1		1676	828	1	1421	759	ı	3060	2378	1765	3026	2340	1740	3793	2769	2001	3651	2689	1967
	150	276	1	1	255	ı	1	571	360	1	526	323	1	419		1	397	ı	1	906	496	,	888	471		1855	1050	518	1617	981	490	3091	2413	1799	3058	2375	1775	3956	2914	2139	3806	2831	2102
	140	361	ı	ı	347	ı	ı	029	441		610	430	1	633	538	439	209	200	421	1078	714	504	1053	969	492	2006	1212	869	1776	1140	299	3121	2447	1833	3088	2408	1809	4112	3052	2270	3959		2230
	130	417	210	1	403	204	-	991	495		662	486	1	784	672	561	748	989	544	1219	860	649	1189	843	633	2141	1347	628		1272				1865	3119	2441	1842	4261	3186	2397			2353
	120	462	569	1	449	262	1	869	538	342	889	530	340	907	777	654	698	743	989	1342	2//6	758	1309	961	748	2263	1464	387		1387		-		1896	3148	2474	1874		3314	2518	-		2472
<u></u>	110	200	313	110	487	306	108	731	575	380	721	295	378	1013	298	731	974	834		1452	1078	_		1062	836	2375	1570			1490			_	1926	3178	2506	1906	4543	3437	2635 ;			2587
Psu [Pa]	100	534	320	151	521	343	149	761	-	410	751	009	409	1109	947	. 66/	1068	914		1553	1167	_		1152			1666		-	-		3239	_	-	3207	2537 2	1936		3567 3	2748 2	_		2697 2
	90 1	999	383	188	553	375	185	06/		-	6//	089	435	1196	1020	. 098	1153 1	286	_	1646 1	_	_		1234	991	2578 2	1756 1			1671 1			_	_	3236 3	2567 2	1966 1	4807 4	3673 3	2858 2			2805 2
		594		. 122	581	404	. 812	817		-	804) /99	458 4	1277 1	1087	916	1233 1	1054 (1733 1	1325		_	1310 1	1057	2672 2	1840 1		-				_		3264 3	2597 2	1995 1	4933 4	3785 3	2966 2			2909
	3 0/	621	439 7	252 2	3 809	431	249 2	842	_		828	983	479 4	1352 1;	1149 1	3 896	1308 1;	1117 1	_	1815 1	1395	1127 1	1772 1	1381	1119 1		1920				-	-	-	-	3292 3	2627 2	2023 19		3895 3	3068 2			3010 2
	. 09	646 6	464 4	280 2	633	456 4	277 2	8 998		500	852 8		498 4	1423 1:	1208 1	1017 8	1378 1	1176 1		1894 1	1462 1	_	1848 1	1447 1	1176 1		1995 19			1903				2069	3319 32	2656 21	2051 20	5175 50	4001	3170 30			3109
	9 09	9 0/9	487 4	307 2	9 /99	479 4	304 2	88	_	518 5	874 8	730 7	516 4	1491 14	1263 13	1064 10	1445 13	1232 1		1968 18	1525 1	_	1922 18	1511 14	1231 1	2927 28	2067 19		-	1973 19		3378 33		2096 20	3346 33	2685 26	2079 20	5291 5	4105 40	3268 3-			3205 3
		693 6	509 4	333 3	9 089	501 4	329 3	911 8	762 7		895 8		533 5	1556 14	1316 12	1108 10	1509 12	1285 12		2040 19	1585 1			1571 1	1282 12	3005 26	2137 20			2040 19				2122 20	3373 33	2713 26	2105 20	5404 52	4207 41	3364 32			3299 32
		715 6	530 54	357 3	702 6	522 54	353 3	932 9				772 7	550 5	1618 15	1367 13	1150 11	1570 15		-		-	_		1628 15	1332 12					2104 20		3432 34	_	-	3400 33		2132 21			3458 33	-		3391 32
		736 7			723 70		376 34		_					_	_				-	_	-	_		_		-							-			68 2741		_					-
			0 5560	3 380		1 542		3 953	_	1 566	4 935	1 792	6 565	34 167.	32 1415	29 1190	35 1629	31 1384	_	39 2175	51 1698	33 1388	37 2124	37 1684	25 1379	25 3154	29 2267	_		26 2166			_	38 2173	52 3426	35 2768	33 2157	30 5624	99 4403	10 3550		_	39 3481
	H	6 756	8 570	4 403	2 743	9 561	0 399	2 973				9 811	4 579	1734	77 1462	36 1229	1685	7 1431			ß 1751	7 1433		39 1737	39 1425	_	39 2329			3226		3484	_		78 3452	2795	18 2183	84 5730	22 4499	3640	_		3569
		h 776	h 588	'n 424	762 h	h 579	h 420	η 992				h 829		h 1790		h 1266	h 1740	h 1477	-	h 2301	Դ 1803			h 1789	h 1469	-	h 2389	_		h 2284			-	_	h 3478	h 2821	h 2208	h 5834	h 4592	h 3729	h 5626		h 3655
	8	m³/h		m³∕h	u3∕h	m³/h	u ₃ /h	m³/h			m³/h		m³/h	m³/h	m³/h	m³/h	u/₂w	m³/h		m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h	m³/h			m³/h	m³/h			m³/h	m³/h	m³/h	u₃/h	m³/h	m³/h	m³/h			m³/h
	>	3	2	_	3	-2	_	3	2	_	3	2	1	3	2	1	3		-	3	2	-	လ		1	3	2	_			_	လ	2	_	3	: 2	1	3	2	-	3	2	_
=	2		UTN 06 DF			UTN 06 ADF			UTN 08DF			UTN 08ADF			UTN 12DF			UTN 12ADF			UTN 16DF			UTN 16ADF			UTN 22DF			UTN 22ADF			UTN 30DF			UTN 30ADF			UTN 40 DF			UTN 40 ADF	

6.1 ACCESSORIES: AIR PRESSURE DROP

Legend:

Qa Air flow

 Δ **Pa** Air pressure drop

			aro arc						1													
	Qa [m³/h]			150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050
	MAF		Pa	2	3	4	5	6	8	10	12	14	15	17	20	-	-	-	-	-	-	-
06A	MAFO		Pa	2	4	5	6	7	9	12	14	16	18	20	23	-	-	-	-	-	-	-
1	PCOF A*		Pa	1	1	2	3	4	5	7	8	10	12	14	16	19	-	-	-	-	-	-
90	PCOF M**	∆Pa	Pa	-	1	1	2	3	3	4	5	6	8	9	10	12	-	-	-	-	-	-
NE D	RE		Pa	-	1	1	1	2	2	3	5	5	6	7	8	9	-	-	-	-	-	-
_	GR		Pa	-	1	2	2	3	4	5	6	8	9	11	12	14	-	-	-	-	-	-
	GM		Pa	-	-	-	-	-	1	1	1	1	1	2	2	2	-	-	-	-		-
	Qa [m³/h]			300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1100	1150	1200
	MAF		Pa	6	7	9	10	11	13	15	17	19	22	24	26	28	-	-	-	-	-	-
⋖	MAFO		Pa	7	8	10	11	13	15	18	20	22	25	28	30	32			-	-		-
- 08A	PCOF A*		Pa	3	4	5	7	8	10	12	14	16	19	21	24	27	30	-	-	-	-	-
- 80	PCOF M**	∆Pa	Pa	2	3	3	4	5	6	8	9	10	12	14	15	17	19	-	-	-	-	-
NE NE	RE		Pa	2	3	3	3	4	5	6	7	8	9	11	12	12	14	-	-	-	1	-
5	GR		Pa	2	3	4	5	6	8	9	11	12	14	16	18	20	23	-	-	-		-
	GM		Pa	-	-	1	1	1	1	1	2	2	2	3	3	4	4	-	-	-		-
	Qa [m³/h]			400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200
	MAF		Pa	5	8	10	13	16	18	21	25	29	32	36	40	-	-	-	-	-	-	-
<	MAFO		Pa	6	9	12	15	18	21	25	29	33	37	42	46	-	-	-	-	-	-	-
12A	PCOF A*		Pa	2	4	5	7	9	12	15	18	21	25	29	33	38	-	-	-	-	-	-
2 -	PCOF M**	∆Pa	Pa	1	2	3	5	6	8	10	12	14	16	19	21	24	-	-	-	-	-	-
Ξ	RE		Pa	1	3	3	5	6	7	9	11	13	15	17	20	22	-	-	-	-	-	-
NE S	GR		Pa	2	4	5	7	9	12	14	17	21	24	28	32	37	-	-	-	-	-	-
	GM	1	Pa	-	-	1	1	1	2	2	3	4	4	5	6	7	-	-	-	-	-	-
	Qa [m³/h]			400	500	600	700	800	900	1000	1100	1200	1300	1400	1600	1800	2000	2200	2400	2600	2800	3000
	MAF		Pa	4	6	8	9	11	13	16	18	20	23	26	32	38	44	-	-	-	-	-
	MAFO		Pa	5	7	9	11	13	15	18	21	23	27	30	37	44	51	-	-	-	-	-
-16A	PCOF A*		Pa	1	2	3	4	5	7	8	10	12	14	16	21	27	33	-	-	-	-	-
- 91	PCOF M**	∆Pa	Pa	1	1	2	3	3	4	5	6	8	9	10	14	17	21	-	-	-	_	-
Z	RE	1	Pa	1	2	3	3	4	5	6	7	8	10	12	15	19	23	-	-	-	-	-
E S	GR		Pa	1	2	3	5	6	7	9	11	13	16	18	24	30	37	-	-	-	-	-
	GM	1	Pa	-	-	-	1	1	1	1	2	2	3	3	4	6	7	-	-	-	-	-
	Qa [m³/h]		-	500	600	700	800	900	1000	1100	1200	1300	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200
	MAF		Pa	4	5	6	7	8	10	12	13	15	17	21	25	29	33	38	43	48	-	-
-	MAFO		Pa	4	6	7	8	10	12	14	15	18	20	24	29	34	38	44	50	55	-	-
22A	PCOF A*		Pa	1	2	3	4	5	7	8	10	12	14	16	21	27	33	40	48	56	65	-
22 -	PCOF M**	∆Pa	Pa	1	1	2	3	3	4	5	6	- 8	9	10	14	17	21	26	31	36	42	-
N 2	RE	†	Pa	1	2	2	2	2	4	4	5	6	7	9	11	13	15	19	22	25	29	-
E S	GR		Pa	1	2	3	3	4	5	6	8	9	10	13	17	21	25	30	36	41	48	-
	GM	1	Pa	-	-	-	-	1	1	1	1	1	2	2	3	4	5	6	7	8	9	-
	Qa [m³/h]			1200	1300	1400	1500	1600	1700	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200
	MAF		Pa	-	-	13	14	16	18	18	22	26	29	33	36	40	45	49	-	-	-	-
	MAFO		Pa	-	-	15	17	18	20	21	25	30	33	38	42	46	52	-	-	-	_	-
30A	PCOF A*	1	Pa	8	9	10	12	14	15	17	21	26	31	36	42	48	54	61	-	-	_	-
1	PCOF M**	∆Pa	Pa	5	6	7	8	9	10	11	14	17	20	23	27	31	35	40	-	-	_	-
N 30	RE		Pa	-	-	5	5	6	7	7	9	11	13	15	17	20	23	26	_	_	_	_
NE D	GR	1	Pa	5	6	7	8	9	11	12	15	18	21	25	29	33	38	43	_	_	-	_
	<u> </u>	t	Pa	1	1	1	1	1	2	2	2	3	4	4	5	6	7	8	_	_	_	_
	GM		· u			1800	1900	2000	2100	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000	4200	4400	4600
	GM Qa [m³/h]			l 1600	1 / 1111									_		00						
	Qa [m³/h]		Pa	1600 13	1700					20	23	26	29	33	36	30	42	46	50	53	57	62
	Qa [m³/h] MAF		Pa Pa	13	14	15	17	17	19	20 23	23 27	26 30	29 34	33	36 41	39 45	42 49	46 53	50 58	53 61	57 66	62 71
40A	Qa [m³/h] MAF MAFO		Pa	13 15	14 16	15 17	17 19	17 20	19 22	23	27	30	34	38	41	45	49	53	58	61	66	71
0 - 40A	Qa [m³/h] MAF MAFO PCOF A*	∧Pa	Pa Pa	13 15 9	14 16 10	15 17 11	17 19 12	17 20 13	19 22 15	23 16	27 19	30 22	34 25	38 20	41 33	45 36	49 40	53 45	58 50	61 54	66 59	71 65
40 -	Qa [m³/h] MAF MAFO PCOF A* PCOF M**	∆Pa	Pa Pa Pa	13 15 9 5	14 16 10 6	15 17 11 6	17 19 12 7	17 20 13 7	19 22 15 9	23 16 9	27 19 11	30 22 13	34 25 15	38 20 17	41 33 19	45 36 21	49 40 24	53 45 26	58 50 30	61 54 32	66 59 35	71 65 38
40 -	Qa [m³/h] MAF MAFO PCOF A* PCOF M** RE	∆Pa	Pa Pa Pa Pa	13 15 9 5	14 16 10 6 5	15 17 11 6 6	17 19 12 7	17 20 13 7	19 22 15 9	23 16 9 8	27 19 11 10	30 22 13 11	34 25 15 13	38 20 17 15	41 33 19 17	45 36 21 19	49 40 24 21	53 45 26 24	58 50 30 27	61 54 32 28	66 59 35 31	71 65 38 35
	Qa [m³/h] MAF MAFO PCOF A* PCOF M**	∆Pa	Pa Pa Pa	13 15 9 5	14 16 10 6	15 17 11 6	17 19 12 7	17 20 13 7	19 22 15 9	23 16 9	27 19 11	30 22 13	34 25 15	38 20 17	41 33 19	45 36 21	49 40 24	53 45 26	58 50 30	61 54 32	66 59 35	71 65 38

- * Inlet connecting panel to rectangular ducts
- ** Outlet connecting panel to rectangular ducts

6.1 ACCESSORIES: AIR PRESSURE DROP

The pressure drops shown below refer to accessories that are not affected by the various sizes of the thermal ventilating units. Pressure drops refer to the accessory itself and are not related to the size of the thermal ventilating units.

Legend:

Qa Air flow

ΔPa Air pressure drop

Qa[m³/h]		ΔPa	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100
	TFA - TFM	Pa	1	1	2	3	4	6	7	9	11	13	15	17	20	23	26	29	32	35	39
	CA2	Pa	1	3	5	8	11	15	20	25	31	37	44	•	1	ı	-	1	1	•	-
	CA3	Pa	-	-	1	2	3	5	7	9	12	15	19	23	27	31	36	41	47	52	59
NE D	CAF2	Pa	4	8	12	17	22	29	36	44	53	62	72	•	1	ı	-	1	1	•	-
	CAF3	Pa	2	4	5	8	10	13	17	20	24	29	33	39	44	50	56	62	69	76	83
	CM1	Pa	13	24	37	53	73	-	ı	1	ı	1	-	•	1	ı	-	1	1	•	-
	CM2	Pa	1	1	2	3	5	6	7	9	11	13	16		-	-	-	-	-		-
	CM3	Pa	-	•	1	1	1	1	2	2	3	3	4	5	5	6	7	7	8	9	10

6.2 SOUND POWER LEVELS FOR OCTAVE BAND

Legend:

Psu Available static pressure L_{wa} A-weighted sound power

Vr Fan speed:

3= high

2= medium

1= low

				Lw					
		125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz	LwA
	Vr	dB	dB	dB	dB	dB	dB	dB	dB/A
	high	40,6	53,6	56,0	58,9	56,7	50,9	42,1	63,0
UTN 06 - 06A	med	36,5	49,2	51,2	52,0	48,2	44,9	36,5	57,0
	low	29,5	42,9	40,9	43,3	39,3	33,9	24,9	48,0
	high	43,6	47,0	60,0	62,0	60,7	54,8	46, 2	66,0
UTN 08 - 08A	med	40,7	53,8	53,8	57,0	53,6	50,6	43,3	61,0
	low	33,8	47,7	47,0	49,8	47,0	41,9	33,5	54,0
	high	45,0	56,9	60,8	64,7	63,5	57,7	49,7	69,0
UTN 12 - 12A	med	41,5	52,6	56,9	59,0	54,7	50,9	40,5	63,0
	low	37,0	48,8	53,0	54,4	50,0	48,6	33,5	59,0
	high	50,7	62,1	64,8	68,1	66,5	62,5	56,2	72,0
UTN 16 - 16A	med	45,0	57,5	60,1	62,5	58,9	56,4	49, 2	67,0
	low	40,5	53,4	55,9	57,5	54,3	50,3	42,4	62,0
	high	52,0	62,5	65,2	70,0	69,2	64,5	58,2	74,0
UTN 22 - 22A	med	46,2	57,7	59,9	62,8	60,5	57,1	50,0	67,0
	low	39,3	50,6	54,2	55,9	53,1	47,8	41,5	60,0
	high	61,0	70,5	70,0	72,5	71,1	69,6	63,8	78,0
UTN 30 - 30A	med	58,3	65,1	67,1	67,9	65,8	64,2	56,7	73,0
	low	52,1	61,3	62,3	63,8	62,6	60,7	49,1	69,0
	high	75,5	79,1	74,2	73,8	71,9	68,7	62,4	79,0
UTN 40 - 40A	med	71,1	75,3	69,9	69,0	67,0	62,7	55, 5	74,0
	low	66,2	71,9	65,8	64,8	62,3	56,5	48,8	70,0

7.1 **COOLING CAPACITY**

Legend:

Tbs, Inlet air temperature D.B. Tbu, Inlet air temperature W.B. Tw₁
Tw₂
Qa Inlet water temperature

Outlet water temperature

Air flow

PFT Total cooling capacity **PFS** Sensible cooling capacity

Qw Water flow rate

Pressure drop on water side ΔPw

TW ₁ / TW ₂ °C	Qa m³/h 300 450	PFT W	6/ PFS				7/	10									
UTN 06	m³/h 300		PFS	_			- 1/	12			8/	13			9/	14	
UTN 06	300	W		Qw	ΔPw	PFT	PFS	Qw	ΔPw	PFT	PFS	Qw	ΔPw	PFT	PFS	Qw	ΔPw
UTN 06			W	I/s	kPa	W	W	l/s	kPa	W	W	I/s	kPa	W	W	l/s	kPa
UTN 06	450	1680	1260	0,080	4	1450	1160	0,069	3	1290	1100	0,061	2	1120	1040	0,053	2
		2390	1790	0,114	7	2040	1650	0,097	5	1630	1500	0,078	4	1430	1430	0,068	3
	600	3010	2270	0,143	11	2590	2110	0,123	8	2110	1930	0,101	6	1800	1800	0,086	4
_	300	1970	1410	0,094	3	1780	1340	0,085	3	1580	1260	0,076	2	1380	1180	0,066	2
UTN 06A	450	2820	2060	0,134	6	2410	1890	0,115	4	1940	1710	0,093	3	1730	1730	0,082	2
	600	3630	2680	0,173	9	3130	2470	0,149	7	2560	2250	0,122	5	2140	2140	0,102	4
L	400	2170	1620	0,103	6	1840	1490	0,088	5	1460	1350	0,070	3	1330	1330	0,063	3
UTN 08	600	3010	2270	0,143	11	2590	2110	0,123	8	2110	1930	0,101	6	1800	1800	0,086	4
	800	3740	2860	0,178	16	3220	2660	0,154	12	2660	2450	0,127	9	2240	2240	0,107	6
<u>.</u>	400	2530	1840	0,120	5	2140	1680	0,102	4	1840	1560	0,088	3	1600	1470	0,076	2
UTN 08A	600	3630	2680	0,173	9	3130	2470	0,149	7	2560	2250	0,122	5	2140	2140	0,102	4
	800	4600	3460	0,219	14	3990	3210	0,190	11	3300	2940	0,158	8	2740	2740	0,131	5
1170.40	800	4220	3070	0,201	12	3630	2840	0,173	9	2960	2580	0,141	6	2490	2490	0,119	5
UTN 12	1000	5030	3660	0,269	17	4340	3390	0,207	13	3580	3100	0,171	9	2990	2990	0,142	7
	1200	5770	4200	0,275	21	4990	3900	0,238	16	4140	3580	0,197	12	3440	3440	0,164	8
-	800	4700	3430	0,224	10	4050	3170	0,193	8	3320	2880	0,158	6	2730	2730	0,130	4
UTN12A	1000	5640	4150	0,269	14	4890	3850	0,233	11	4060	3530	0,194	8	3300	3300	0,158	5
	1200	6510	4830	0,310	18	5660	4490	0,270	14	4730	4140	0,226	10	3830	3830	0,183	7
IITN 16	1200	6020	4740	0,287	15	5180	4410	0,247	12	3870	3870	0,185	7	3550	3550	0,169	6
UTN 16	1400	6770	5400	0,323	19	5840	5040	0,279	14	4370	4370	0,208	9	4010	4010	0,191	7
	1600	7470	6040	0,356	22	6470	5650	0,308	17	4830	4830	0,230	10	4440	4440	0,212	9
UTN 16A	1200	6650	5130	0,317	10	5640	4720	0,269	7	4260	4260	0,203	4	3870	3870	0,185	4
- UIN TOA	1400	7570	5900	0,361	12	6470	5460	0,308	9	4870	4870	0,232	6 7	4450	4450	0,212	5
_	1600	8440	6640	0,402	15	7240	6170	0,345	11	5450	5450	0,260		4990	4990	0,238	6
UTN 22	1600 1900	8930 10220	6680	0, 425 0, 487	16 20	7730 8860	6200	0,369	12	6380 7370	5680	0,305 0,352	9	5250 6030	5250	0,251	6 8
- IN 22	2200	11420	7720		24	9920	7180	0,422	16 19		6610		11 14		6030	0,288 0,322	
	1600	10070	8710 7360	0,544 0,480	13	8740	8120 6810	0,473 0,417	10	8280 7230	7490 6210	0,395 0,345	7	6760 5840	6760 5840	0,322	10 5
UTN 22A	1900	11660	8600	0,460	17	10150	7980	0,417	13	8470	7320	0,343	9	6800	6800	0,324	6
- IN 22A	2200	13150	9800	0,555	21	11480	9110	0,464	16	9630	8390	0,404	12	7700	7700	0,324	8
	2000	11600	8520	0,627	18	10180	7950	0,347	15	8640	7340	0,439	11	6670	6670	0.318	7
UTN 30	2500	13770	10270	0,656	25	12120	9610	0,400	20	10330	8910	0,412	15	7970	7970	0,310	9
-	3000	15780	11930	0,752	32	13890	11180	0,662	25	11870	10410	0,433	19	9150	9150	0,300	12
	2000	12920	9310	0,732	25	11510	8720	0,549	20	9990	8110	0,300	15	8300	7450	0.396	11
UTN 30A	2500	15380	11280	0,732	33	13700	10600	0,653	27	11900	9880	0,568	21	9940	9120	0,474	15
-	3000	17650	13180	0,732	42	15720	12400	0,750	34	13670	11590	0,652	27	11440	10740	0.546	20
	3000	15010	11400	0,715	15	13010	10620	0,620	12	10780	9780	0,514	8	8660	8660	0,413	6
UTN 40	4000	18580	14380	0.886	22	16180	13460	0,772	17	13570	12480	0,647	13	10820	10820	0,516	8
	5000	21760	17150	1,037	29	19000	16100	0,906	23	16010	14990	0,763	17	12730	12730	0,607	11
	3000	17020	12770	0,811	15	14860	11900	0,708	12	12460	10970	0,594	8	9730	9730	0,464	5
UTN 40A	4000	21260	16340	1,014	22	18640	15300	0,889	17	15780	14210	0,753	13	12270	12270	0,404	8
-	5000	25080	19710	1,195	29	22020	18520	1,050	23	18720	17270	0,733	17	14540	14540	0,694	11

7.1 **COOLING CAPACITY**

Legend:

Tbs₁ Inlet air temperature D.B. Tbu Inlet air temperature W.B. Tw₁ Inlet water temperature

Tw₂ Outlet water temperature

Air flow

PFT Total cooling capacity PFS Sensible cooling capacity

Qw Water flow rate

Pressure drop on water side ΔPw

Tbs ₁ / Tbu ₁ (UR ₁) °C								27	7 /19 (47	%)							
Tw ₁ / Tw ₂ °C			6/	11			7/	12			8/	13			9/	14	
	Qa	PFT	PFS	Qw	ΔPw	PFT	PFS	Qw	ΔPw	PFT	PFS	Qw	ΔPw	PFT	PFS	Qw	ΔPw
	m³/h	W	W	l/s	kPa	W	W	l/s	kPa	W	W	l/s	kPa	W	W	I/s	kPa
	300	2030	1460	0,097	5	1780	1360	0,085	4	1500	1250	0,072	3	1320	1180	0,063	2
UTN 06	450	2840	2060	0,135	10	2520	1930	0,120	8	2160	1800	0,103	6	1760	1650	0,084	4
	600	3560	2600	0,169	14	3150	2450	0,150	12	2720	2290	0,130	9	2250	2110	0,107	6
	300	2300	1620	0,110	4	2020	1500	0,096	3	1820	1420	0,087	3	1620	1340	0,077	2
UTN 06A	450	3340	2370	0,159	8	2960	2210	0,141	6	2550	2050	0,122	5	2060	1860	0,098	3
	600	4270	3070	0,203	12	3800	2870	0,181	10	3290	2670	0,157	8	2730	2460	0,130	5
IITN 00	400	2580	1870	0,123	8	2280	1750	0,109	7	1950	1620	0,093	5	1570	1480	0,075	3
UTN 08	600	3560	2600	0,169	14	3150	2450	0,150	12	2720	2290	0,130	9	2250	2110	0,107	6
	800	4400	3270	0,210	21	3910	3080	0,186	17	3390	2890	0,162	13	2660	2660	0,127	9
IITAI OOA	400	3010	2120	0,143	6	2660	1980	0,127	5	2280	1830	0,109	4	1880	1670	0,090	3
UTN 08A	600	4270	3070	0,203	12	3800	2870	0,181	10	3290	2670	0,157	8	2730	2460	0,130	5
	800	5400	3950	0,257	18	4810	3710	0,230	15	4190	3460	0,200	11	3500	3210	0,167	8
UTN 12	800	4990	3520	0,238	16	4430	3300	0,211	13	3830	3070	0,183	10	3160	2820	0, 151	7
U IN 12	1000	5920	4180	0,282	22	5270	3930	0,251	18	4570	3660	0,218	14	3800	3380	0, 181	10
	1200	6780	4800	0,323	28	6040	4510	0,288	23	5240	4210	0,250	18	4380	3900	0,209	13
UTN 12A	800 1000	5520	3920 4740	0,263	14 19	4920 5900	3680 4450	0,235	11 15	4270 5140	3430	0,204 0,245	9 12	3540 4300	3150 3850	0,169	6 9
O IN 12A		6600		0,315		6800		0,281 0,324		5940	4160	0,243				0, 205 0, 238	
	1200 1200	7610	5500	0,363	24	6310	5180		19 17	5460	4850		15 13	5000 4230	4500	· ·	11 8
UTN 16	1400	71 00 7970	5420 6160	0,336	25	7090	5110 5820	0,301 0,338	20	6150	4790 5470	0,260 0,293	16	4760	4230 4760	0, 202 0, 227	10
0 III 10	1600	8790	6890	0,380	30	7820	6520	0,373	24	6800	6130	0,293	19	5260	5260	0, 251	12
	1200	7910	5890	0,413	13	6990	5530	0,333	11	5990	5140	0,324	8	4690	4690	0,224	5
UTN 16A	1400	8960	6760	0,377	17	7950	6360	0,3379	13	6840	5930	0,200	10	5340	5340	0, 255	7
	1600	9970	7600	0, 475	20	8850	7160	0,422	16	7640	6700	0,364	12	5950	5950	0,284	8
	1600	10490	7630	0.500	21	9350	7170	0,446	17	8130	6700	0.388	13	6780	6190	0,324	10
UTN 22	1900	11970	8800	0,571	26	10690	8290	0.509	22	9310	7760	0,444	17	7800	7200	0,372	12
	2200	13370	9920	0.637	32	11940	9360	0.569	26	10410	8780	0.496	20	8740	8170	0,417	15
	1600	11780	8390	0.561	17	10540	7880	0,503	14	9200	7340	0,438	11	7690	6760	0.367	8
UTN 22A	1900	13600	9790	0,648	22	12180	9210	0,581	18	10650	8600	0,508	14	8970	7960	0,428	10
	2200	15330	11150	0,731	27	13740	10500	0,655	22	12030	9830	0,574	17	10160	9120	0, 485	13
	2000	13450	9670	0,641	24	12100	9130	0,577	20	10660	8560	0,508	16	9100	7970	0, 434	12
UTN 30	2500	15950	11640	0,760	32	14360	11010	0,685	27	12670	10360	0,605	21	10850	9670	0,518	16
	3000	18260	13510	0,871	41	16450	12800	0,784	34	14520	12060	0,692	27	12450	11290	0, 594	21
	2000	14790	10490	0,705	31	13430	9930	0,640	26	11990	9350	0,572	21	10440	8740	0, 498	17
UTN 30A	2500	17610	12710	0,839	42	15990	12050	0,762	35	14270	11370	0,680	29	12430	10660	0, 593	23
	3000	20150	14820	0,960	53	18350	14100	0,875	45	16370	13320	0,781	37	14270	12520	0, 681	29
	3000	17470	13000	0,832	20	15580	12270	0,743	16	13540	11510	0,646	13	11290	10680	0,539	9
UTN 40	4000	21560	16370	1,027	29	19260	15500	0,918	23	16810	14590	0,801	18	12810	12810	0,611	11
	5000	25210	19510	1,201	38	22550	18510	1,075	31	19710	17470	0,940	24	15020	15020	0,717	15
	3000	19680	14530	0,938	19	17640	13710	0,841	16	15440	12860	0,736	12	13010	11950	0, 621	9
UTN 40A	4000	24530	18560	1,169	28	22010	17570	1,049	23	19330	16540	0,921	18	16410	15460	0, 783	14
	5000	28900	22370	1,378	37	25950	21230	1,238	31	15440	12860	0,736	12	17080	17080	0, 815	15

HEATING CAPACITY 7.2

Legend:

Tbs₁ Inlet air temperature D.B. Tw₁ Inlet water temperature

Outlet water temperature

Qaʻ Air flow PT Heating capacity Qw Water flow rate

 $\Delta \textbf{Pw}~$ Pressure drop on water side

Tbs ₁ / Tbu ₁ (UI	R₁) °C						2	20					
Tw ₁ / Tw ₂	°C		50 / 45			60 / 50			70 / 60			90/70	
	Qa	PT	Qw	ΔPw	PT	Qw	∆Pw	PT	Qw	ΔPw	PT	Qw	∆Pw
	m³/h	W	l/s	kPa	W	l/s	kPa	W	l/s	kPa	W	l/s	kPa
	300	2410	0,116	6	3060	0,074	3	3970	0,097	4	5330	0,065	2
UTN 06	450	3290	0,159	10	4180	0, 101	5	5430	0,132	7	7260	0,089	3
	600	4070	0,197	15	5160	0, 125	7	6700	0,163	10	8940	0, 110	5
	300	2690	0,130	4	3450	0,084	2	4450	0,108	3	6020	0,074	1
UTN 06A	450	3790	0,184	8	4850	0, 118	4	6270	0,153	5	8460	0, 104	3
	600	4790	0,232	12	6110	0, 148	5	7900	0,192	8	10620	0, 130	4
	400	3010	0,146	9	3830	0,093	4	4970	0,121	6	6660	0,082	3
UTN 08	600	4070	0,197	15	5160	0, 125	7	6700	0,163	10	8940	0, 110	5
	800	4990	0,242	22	6300	0, 153	9	8200	0,200	15	10910	0, 134	7
	400	3440	0,166	7	4400	0, 107	3	5690	0,139	5	7680	0,094	2
UTN 08A	600	4790	0,232	12	6110	0, 148	5	7900	0,192	8	10620	0, 130	4
	800	5980	0,290	18	7610	0, 185	8	9860	0,240	12	13210	0, 162	6
	800	5760	0,279	18	7320	0, 178	8	9490	0,231	12	12690	0, 156	6
UTN 12	1000	6790	0,328	23	8600	0, 209	10	11170	0,272	16	14900	0, 183	7
	1200	7730	0,374	29	9770	0,237	13	12710	0,310	20	16920	0, 207	9
	800	6480	0,314	15	8290	0, 201	7	10690	0,261	10	14400	0, 177	5
UTN 12A	1000	7720	0,374	20	9850	0, 239	9	12730	0,310	14	17100	0, 210	7
	1200	8880	0,430	26	11300	0, 274	11	14630	0,356	17	19590	0, 240	8
	1200	7920	0,383	21	10030	0, 244	9	13030	0,318	14	17370	0, 213	7
UTN 16	1400	8830	0,428	25	11170	0, 271	11	14520	0,354	17	19320	0,237	8
	1600	9690	0,469	29	12220	0, 297	13	15920	0,388	20	21150	0,259	9
	1200	8940	0,433	14	11380	0, 276	6	14730	0,359	9	19730	0, 242	4
UTN 16A	1400	10040	0,486	17	12740	0,309	7	16530	0,403	11	22090	0, 271	5
	1600	11080	0,536	20	14040	0,341	9	18230	0,444	13	24330	0,298	6
	1600	11760	0,569	21	14960	0,363	9	19380	0,472	14	25930	0,318	7
UTN 22	1900	13350	0,646	27	16930	0, 411	12	21970	0,536	18	29340	0,360	9
	2200	14830	0,718	32	18770	0, 455	14	24400	0,595	21	32520	0,399	10
	1600	12980	0,628	17	16620	0, 403	7	21420	0,522	11	28840	0,354	5
UTN 22A	1900	14880	0,720	21	19000	0, 461	9	24540	0,598	14	32970	0, 404	7
	2200	16680	0,807	26	21260	0,516	11	27500	0,670	18	36870	0, 452	8
UT1 62	2000	15010	0,727	24	19180	0, 466	11	24740	0,603	16	33240	0, 407	8
UTN 30	2500	17750	0,859	32	22600	0, 549	14	29220	0,712	22	39140	0, 480	10
	3000	20270	0,980	41	25760	0,625	18	33350	0,813	27	44570	0,546	13
	2000	16300	0,788	31	20970	0,509	14	26890	0,655	21	36350	0, 446	10
UTN 30A	2500	19430	0,940	42	24930	0,605	19	32040	0,781	28	43180	0,529	14
	3000	22340	1,081	53	28590	0,694	24	36810	0,897	36	49510	0,607	17
	3000	20480	0,991	25	26010	0,631	11	33710	0,821	17	45030	0,552	8
UTN 40	4000	25120	1,216	35	31790	0,771	15	41300	1,006	24	55000	0,674	11
	5000	29270	1,416	46	36950	0,897	20	48090	1,172	31	63880	0,784	15
	3000	22620	1,095	25	28890	0, 701	11	37280	0,909	17	50070	0, 614	8
UTN 40A	4000	28050	1,358	36	35690	0,866	16	46180	1,126	24	61810	0,758	12
	5000	32960	1,595	48	41800	1,015	21	54230	1,321	32	72350	0,887	15

7.2 **HEATING CAPACITY**

Legend:

Tbs₁ Inlet air temperature D.B. Tw₁ Inlet water temperature Outlet water temperature

Qa Air flow PT Heating capacity Qw Water flow rate

 ΔPw Pressure drop on water side

Tbs ₁ / Tbu ₁ (l	JR₁) °C						2	22					
Tw ₁ / Tw ₂	°C		50 / 45			60 / 50			70 / 60			90 / 70	
	Qa	PT	Qw	ΔPw	PT	Qw	∆Pw	PT	Qw	∆Pw	PT	Qw	∆Pw
	m³/h	W	l/s	kPa	W	I/s	kPa	W	l/s	kPa	W	l/s	kPa
	300	2220	0,107	5	3060	0,074	3	3970	0,097	4	5330	0,065	2
UTN 06	450	3040	0,147	9	4180	0, 101	5	5430	0,132	7	7260	0,089	3
	600	3760	0,182	13	5160	0, 125	7	6700	0,163	10	8940	0, 110	5
	300	2480	0,120	4	3450	0,084	2	4450	0,108	3	6020	0,074	1
UTN 06A	450	3500	0,170	7	4850	0, 118	4	6270	0,153	5	8460	0, 104	3
	600	4420	0,214	11	6110	0, 148	5	7900	0,192	8	10620	0, 130	4
	400	2780	0,135	8	3830	0,093	4	4970	0,121	6	6660	0,082	3
UTN 08	600	3760	0,182	13	5160	0, 125	7	6700	0,163	10	8940	0, 110	5
	800	4610	0,223	19	6300	0, 153	9	8200	0,200	15	10910	0, 134	7
	400	3170	0,154	6	4400	0, 107	3	5690	0,139	5	7680	0,094	2
UTN 08A	600	4420	0,214	11	6110	0, 148	5	7900	0,192	8	10620	0, 130	4
	800	5520	0,267	16	7610	0, 185	8	9860	0,240	12	13210	0, 162	6
	800	5320	0,258	15	7320	0, 178	8	9490	0,231	12	12690	0, 156	6
UTN 12	1000	6270	0,303	20	8600	0, 209	10	11170	0,272	16	14900	0, 183	7
	1200	7130	0,345	25	9770	0, 237	13	12710	0,310	20	16920	0, 207	9
	800	5980	0,290	13	8290	0, 201	7	10690	0,261	10	14400	0, 177	5
UTN 12A	1000	7130	0,345	18	9850	0,239	9	12730	0,310	14	17100	0,210	7
	1200	8200	0,397	22	11300	0,274	11	14630	0,356	17	19590	0, 240	8
	1200	7310	0,354	18	10030	0, 244	9	13030	0,318	14	17370	0, 213	7
UTN 16	1400	8830	0,428	25	11170	0, 271	11	14520	0,354	17	19320	0,237	8
	1600	9690	0,469	29	12220	0, 297	13	15920	0,388	20	21150	0, 259	9
	1200	8250	0,399	12	11380	0,276	6	14730	0,359	9	19730	0,242	4
UTN 16A	1400	10040	0,486	17	12740	0,309	7	16530	0,403	11	22090	0, 271	5
	1600	11080	0,536	20	14040	0,341	9	18230	0,444	13	24330	0, 298	6
	1600	11760	0,569	21	14960	0,363	9	19380	0,472	14	25930	0,318	7
UTN 22	1900	13350	0,646	27	16930	0, 411	12	21970	0,536	18	29340	0,360	9
	2200	14830	0,718	32	18770	0, 455	14	24400	0,595	21	32520	0, 399	10
	1600	12980	0,628	17	16620	0, 403	7	21420	0,522	11	28840	0,354	5
UTN 22A	1900	14880	0,720	21	19000	0, 461	9	24540	0,598	14	32970	0, 404	7
	2200	16680	0,807	26	21260	0,516	11	27500	0,670	18	36870	0, 452	8
	2000	15010	0,727	24	19180	0, 466	11	24740	0,603	16	33240	0, 407	8
UTN 30	2500	17750	0,859	32	22600	0, 549	14	29220	0,712	22	39140	0, 480	10
	3000	20270	0,980	41	25760	0,625	18	33350	0,813	27	44570	0, 546	13
	2000	16300	0,788	31	20970	0, 509	14	26890	0,655	21	36350	0, 446	10
UTN 30A	2500	19430	0,940	42	24930	0,605	19	32040	0,781	28	43180	0, 529	14
	3000	22340	1,081	53	28590	0,694	24	36810	0,897	36	49510	0,607	17
	3000	18920	0,915	21	24430	0, 593	10	32100	0,782	15	43390	0, 532	7
UTN 40	4000	23190	1,122	30	29840	0,724	14	39320	0,958	22	52970	0, 649	10
	5000	27010	1,308	40	34670	0,842	18	45780	1,116	28	61540	0,754	14
	3000	20900	1,011	21	27130	0, 659	10	35510	0,865	15	48230	0, 591	7
UTN 40A	4000	25910	1,254	31	33520	0,813	14	43980	1,072	22	59520	0,730	11
	5000	30430	1,473	41	39250	0, 953	19	51620	1,258	29	69690	0,854	14

7.2 **DF COIL HEATING CAPACITY**

Legend:

Tbs₁ Inlet air temperature D.B. Tw₁ Inlet water temperature Outlet water temperature

Air flow

Qa² PT Heating capacity Qw Water flow rate

 ΔPw Pressure drop on water side

Tbs₁°C							20						
Tw ₁ / Tw ₂ °C			50 / 45			60 / 50			70 / 60			90 / 70	
	Qa	PT	Qw	∆Pw	PT	Qw	ΔPw	PT	Qw	ΔPw	PT	Qw	ΔPw
	m³/h	W	I/s	kPa	W	l/s	kPa	W	l/s	kPa	W	l/s	kPa
	300	1660	0,080	6	2010	0,049	2	2730	0,066	4	3540	0,043	2
UTN 06DF	450	2070	0, 100	8	2530	0,061	3	3400	0,083	5	4420	0,054	2
	600	2390	0, 116	11	2930	0,071	4	3920	0,096	7	5090	0,062	3
	400	1950	0,094	7	2370	0,058	3	3190	0,078	5	4150	0,051	2
UTN 08DF	600	2390	0, 116	11	2930	0,071	4	3920	0,096	7	5090	0,062	3
	800	2740	0, 133	13	3360	0,081	6	4490	0,110	9	5820	0,071	4
	800	3280	0, 158	16	4060	0,099	7	5370	0,131	10	7030	0,086	5
UTN12DF	1000	3650	0, 176	19	4510	0, 109	8	5970	0,146	13	7800	0,096	6
	1200	3970	0, 192	22	4900	0, 119	9	6500	0,158	14	8470	0,104	7
	1200	4900	0,237	15	6040	0, 146	6	8030	0,196	10	10460	0,128	5
UTN 16DF	1400	5280	0, 255	17	6490	0, 158	7	8650	0,211	12	11250	0,138	5
	1600	5620	0,272	19	6900	0, 168	8	9210	0,224	13	11960	0,147	6
	1600	7930	0,384	13	9880	0,240	5	13020	0,317	9	17110	0,210	4
UTN 22DF	1900	8840	0, 428	15	10990	0,267	7	14500	0,353	10	19020	0,233	5
	2200	9670	0, 468	18	12010	0,292	8	15860	0,387	12	20790	0,255	6
	2000	10020	0, 485	15	12540	0,304	6	16450	0,401	10	21690	0,266	5
UTN 30DF	2500	11530	0,558	19	14400	0,350	8	18920	0,461	13	24900	0,305	6
	3000	12900	0,624	23	16080	0,390	10	21150	0,515	16	27790	0,341	7
	3000	12500	0,605	17	15590	0,378	7	20490	0,499	11	26940	0,330	5
UTN 40DF	4000	14820	0,718	22	18450	0, 448	10	24290	0,592	15	31870	0,391	7
	5000	16860	0,816	28	20960	0,508	12	27630	0,673	19	36190	0,444	9

7.2 **DF COIL HEATING CAPACITY**

Legend:

Inlet air temperature D.B. Tbs₁ Tw₁ Inlet water temperature Outlet water temperature

Air flow

Qa[°] PT Heating capacity Qw Water flow rate

 ΔPw Pressure drop on water side

Tbs ₁ °C							22						
Tw ₁ / Tw ₂ °C			50 / 45			60 / 50			70 / 60			90 / 70	
	Qa	PT	Qw	∆Pw									
	m³/h	W	l/s	kPa									
	300	1520	0,074	5	1870	0,045	2	2590	0,063	3	3390	0,042	2
UTN 06DF	450	1900	0,092	7	2350	0,057	3	3230	0,079	5	4240	0,052	2
	600	2200	0,107	9	2730	0,066	4	3730	0,091	6	4900	0,060	3
	400	1790	0,087	6	2210	0,054	3	3030	0,074	4	3990	0,049	2
UTN 08DF	600	2200	0,107	9	2730	0,066	4	3730	0,091	6	4900	0,060	3
	800	2520	0,122	12	3130	0,076	5	4270	0,104	8	5590	0,069	4
	800	3020	0,146	13	3800	0,092	6	5110	0,124	10	6760	0,083	4
UTN12DF	1000	3360	0,163	16	4220	0,102	7	5680	0,139	11	7510	0,092	5
	1200	3650	0,177	19	4580	0,111	8	6180	0,151	13	8150	0,100	6
	1200	4510	0,218	13	5640	0,137	6	7630	0,186	9	10060	0,123	4
UTN 16DF	1400	4860	0,235	15	6070	0,147	6	8220	0,200	11	10820	0,133	5
	1600	5170	0,250	17	6450	0,157	7	8750	0,213	12	11500	0,141	6
	1600	7310	0,354	11	9250	0,225	5	12380	0,302	8	16460	0,202	4
UTN 22DF	1900	8140	0,394	13	6970	0,169	8	13790	0,336	9	18310	0,224	4
	2200	8910	0,431	16	11250	0,273	7	15090	0,368	11	20010	0,245	5
	2000	9240	0,447	13	11760	0,285	6	15650	0,381	9	20880	0,256	4
UTN 30DF	2500	10630	0,515	17	13490	0,327	7	18000	0,439	12	23970	0,294	6
	3000	11890	0,575	20	15070	0,366	9	20130	0,490	14	26760	0,328	7
	3000	11520	0,558	14	14610	0,355	6	19500	0,475	10	25940	0,318	5
UTN 40DF	4000	13670	0,661	19	17290	0,419	8	23120	0,563	14	30680	0,376	6
	5000	15550	0,753	24	19630	0,476	11	26290	0,641	17	34840	0,427	8

8 INSTALLATION SUGGESTIONS

UTN units can be installed both vertically and horizzontally.

The UTN units are always supplied for the A-A placing.

If a different placing is needed the installer can modify it before mounting the unit (see chapter 3 "POSSIBLE CONFIGURATIONS").

Choose the unit position to have the best ductwork path.

The air sucted by the unit must be filtered: use the MAF or MAFO accessories. Fit any accessories on the standard unit before installing it.

It is suggested to use anti-vibration joint (available as option) between the unit and the ducts.

Ductworks, in particular the air outlet one, must be insulated to avoid moisture formation.

Keep free space around the fan coil to allow proper operation of the unit and ordinary and extraordinary maintenance.

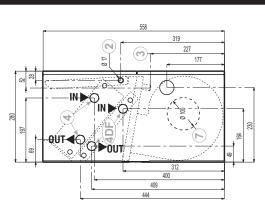
Install the remote control panel, if any, in a position that can easily be reached by the user to set the functions and that is suitable for the proper detection of the temperature, if provided.

Therefore avoid:

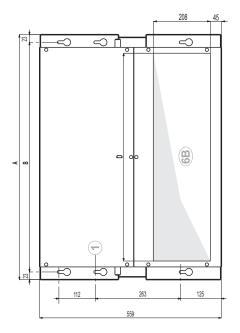
- positions directly exposed to sunlight;
- positions exposed to hot or cold draughts;
- obstacles preventing the proper temperature detection.

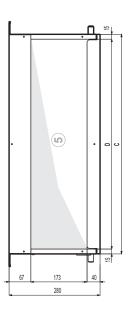
If the system is shut down during the winter months, drain off the water from the system to prevent damage due to freezing; if antifreeze solutions are used, check the freezing point using the table shown at the foot of the page.

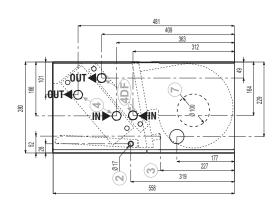
Glycol percentage in weight	Freezing temperature (°C)	Capacity correction factor	Pressure drop correction factor
0	0	1,00	1,00
10	-4	0,97	1,05
20	-10	0,92	1,10
30	-16	0,87	0,05
40	-24	0,82	1,20

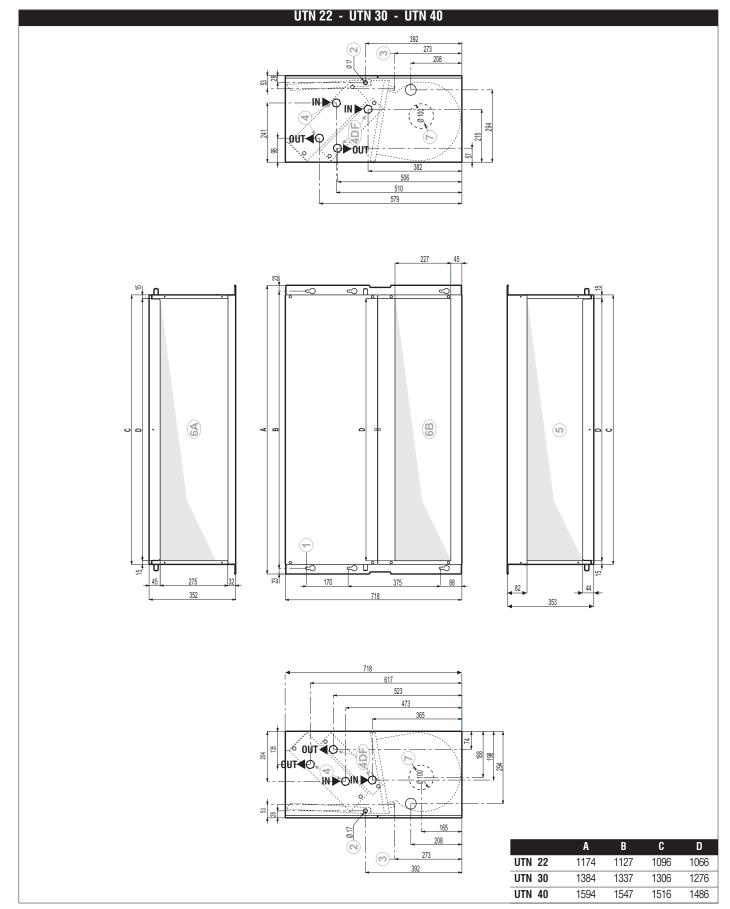


9 DIMENSIONAL DATA


- 1: 6 fast-coupling slots
- 2: condensate discharge horizontal installation
- 3: condensate discharge vertical installation
- 4: right-hand hydraulic attachments
- 5: AIR DELIVERY


- **6**: AIR INTAKE
 - 6-A supply terms
 - 6-B changeable during installation
- 7: round pre-sheared element (ϕ 100 mm) for external air inlet




	A	В	C	D
UTN 06	754	707	676	646
UTN 08	754	707	676	646
UTN 12	964	917	886	856
UTN 16	1174	1127	1096	1066

9 DIMENSIONAL DATA

- 1: 6 fast-coupling slots
- 2: condensate discharge horizontal installation
- 3: condensate discharge vertical installation
- 4: right-hand hydraulic attachments
- 5: AIR DELIVERY

- **6:** AIR INTAKE
 - 6-A supply terms
 - 6-B changeable during installation
- 7: round pre-sheared element (ϕ 100 mm) for external air inlet

Wiring diagram notes

WARNING! Turn off the power supply before beginning any wiring

The dashed lines connections must be carried out by the installer.

Each fan-coil thermal-ventilating unit requires a switch (IL) on the feeder line with a distance of at least 3 mm between the opening contacts, and a suitable safety fuse (F).

10.1 **UTN** without control panel:

BK =black, high speed BU =blue, medium speed CN = faston connector

protection fuse, not supplied F =GNYE =green/yellow, ground

GY =grey, medium speed IL = mains switch, not supplied

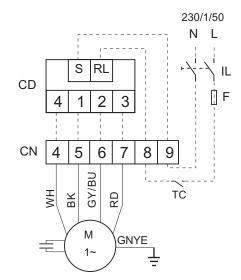
M =fan motor RD =red, low speed WH =white, common

To the control panel

10.2 UTN with CD remote three speed selector and TC fan stop thermostat:

black, high speed BK =BU =blue, medium speed

CD =remote speed selection switch


CN = faston connector

F =

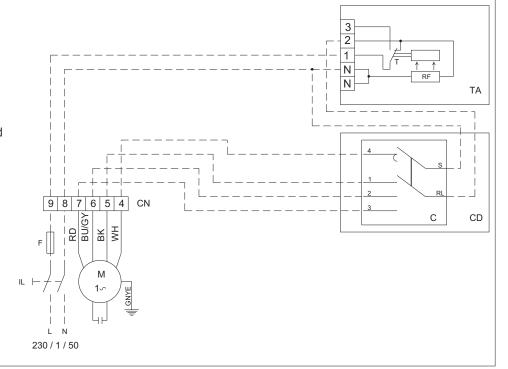
protection fuse, not supplied GNYE = green/yellow, ground grey, medium speed GY =IL = mains switch, not supplied

M =fan motor RD =red, low speed TC =fan stop thermostat

WH =white, common

10.3 UTN with CD remote three speed selector and TA room thermostat:

BK =black, high speed BU = blue, medium speed CD =remote speed selection

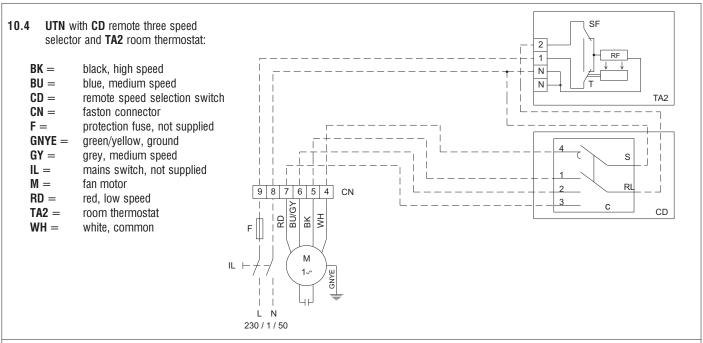

switch

CN = faston connector

F =protection fuse, not supplied green/yellow, ground GNYE =

GY =grey, medium speed IL = mains switch, not supplied

M =fan motor RD =red, low speed room thermostat TA =WH =white, common



Wiring diagram notes

WARNING! Turn off the power supply before beginning any wiring connections.

The dashed lines connections must be carried out by the installer.

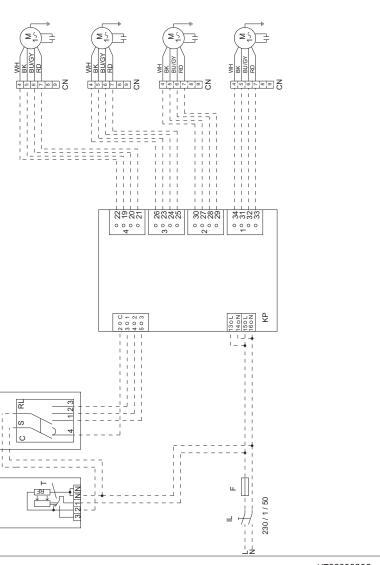
Each fan-coil thermal-ventilating unit requires a switch (IL) on the feeder line with a distance of at least 3 mm between the opening contacts, and a suitable safety fuse (F).

10.5 UTN unit connected in parallel with CD remote selection switch, TA room thermostat and KP power interface:

BK = black, high speed BU = blue, medium speed

CD = Remote speed selection switch

CN = faston connector

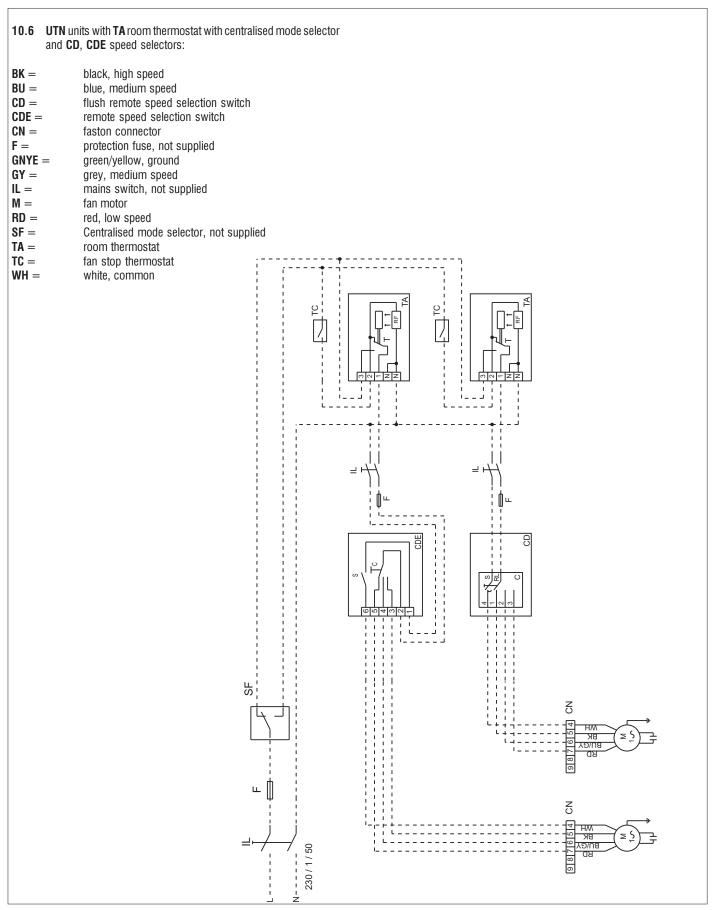

 ${f F}={f GNYE}={f green/yellow,\ ground}$

GY = grey, medium speed

KP = master/sleeve interface, accessory

IL = mains switch, not supplied

 $\mathbf{M} =$ fan motor $\mathbf{RD} =$ red, low speed $\mathbf{WH} =$ white, common



Wiring diagram notes

WARNING! Turn off the power supply before beginning any wiring connections.

The dashed lines connections must be carried out by the installer.

Each fan-coil thermal-ventilating unit requires a switch (IL) on the feeder line with a distance of at least 3 mm between the opening contacts, and a suitable safety fuse (F).

F =

10 WIRING DIAGRAMS

Wiring diagram notes

WARNING! Turn off the power supply before beginning any wiring connections.

The dashed lines connections must be carried out by the installer.

Each fan-coil thermal-ventilating unit requires a switch (IL) on the feeder line with a distance of at least 3 mm between the opening contacts, and a suitable safety fuse (F).

10.7 UTN units with **TD** wall mounted control with speed selector, electromechanical thermostat and summer winter selector:

BK = black, high speed BU = blue, medium speed CN = faston connector

GNYE = green/yellow, ground GY = grey, medium speed

IL = mains switch, not supplied

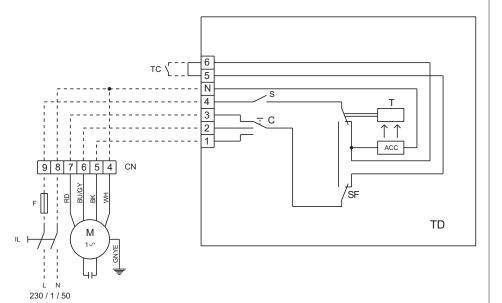
M = fan motor

RD = red, low speed

SF = centralised mode selector, not

supplied

TD = wall mounted control with


speed selector,

electromechanical thermostat

protection fuse, not supplied

and summer winter selector

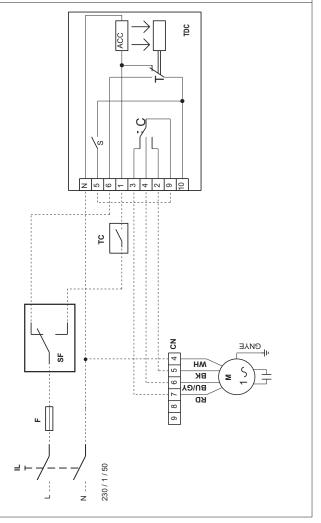
WH = white, common

10.8 UTN units with **TDC** wall mounted control with speed selector and electromechanical thermostat:

BK = black, high speed BU = blue, medium speed CN = faston connector

F = protection fuse, not supplied GNYE = green/yellow, ground GY = grey, medium speed IL = mains switch, not supplied

 $\mathbf{M} =$ fan motor $\mathbf{RD} =$ red, low speed


SF = centralised mode selector, not supplied

TC = fan stop motor

TDC = wall mounted control with speed selector and

electromechanical thermostat

 $\mathbf{WH} = \mathbf{White}, \mathbf{common}$

Wiring diagram notes

WARNING! Turn off the power supply before beginning any wiring connections

The dashed lines connections must be carried out by the installer.

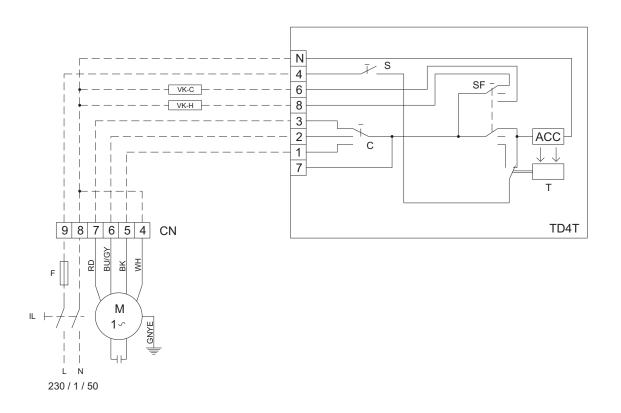
Each fan-coil thermal-ventilating unit requires a switch (IL) on the feeder line with a distance of at least 3 mm between the opening contacts, and a suitable safety fuse (F).

10.9 UTN units with **TD4T** wall mounted control with speed selector, electromechanical thermostat and summer winter selector (heating/cooling) for 2/4 pipe systems with valves:

BK = black, high speed BU = blue, medium speed CN = faston connector

 $\begin{array}{ll} \textbf{F} = & \text{protection fuse, not supplied} \\ \textbf{GNYE} = & \text{green/yellow, ground} \\ \textbf{GY} = & \text{grey, medium speed} \\ \textbf{IL} = & \text{mains switch, not supplied} \end{array}$

 $\mathbf{M} =$ fan motor $\mathbf{RD} =$ red, low speed


SF = centralised mode selector, not supplied TD4T = wall mounted control with speed selector,

electromechanical thermostat and summer winter selector

for 2/4 pipe systems with valves.

VK-C = on/off valve for cooling circuit VK-H = on/off valve for heating circuit

WH = white, common

11 MOTORS ELECTRICAL DATA

The following table describes the characteristics of the motors at available working conditions.

Leaend:

Vr Operation speed
Pass Power input
Operation current

	Vr	I _{æs} (A)	$P_{ass}(W)$	
	high	0, 820	188	
U TN 06-06A	med	0, 550	122	
	low	0,400	84	
	high	1,210	265	
U TN 08-08A	med	0, 810	185	
	low	0,700	135	
	high	2, 100	460	
UTN12-12A	med	1,600	345	
	low	1,350	385	
	high	2,500	505	
UTN16-16A	med	1,800	380	
	low	1,400	290	
	high	3,500	750	
U TN 22-22A	med	2,350	535	
	low	1,800	370	
	high	5, 600	1300	
U TN 30-30A	med	4,600	1090	
	low	3,800	870	
	high	5, 556	1150	
U TN 40-40A	med	3,961	820	
	low	3,140	650	

12 ACCESSORIES

CD - Flush wall-mounted speed selector

Flush wall-mounted control panel is provided with a 4 positions (3speed + stop) rotation selector. The CD control panel allows the ON/OFF and fan speed selection of the high pressure fan coil unit.

CDE - wall mounted speed selector

Wall mounted control panel is provided with a 3 positions (3 speed) and switch ON/OFF. The CDE control panel allows the ON/OFF and fan speed selection of the high pressure fan coil unit.

TD - Wall mounted control with speed selector, thermostat and summer-winter selector

Wall mounted control panel complete with fan speed selector, electromechanical thermostat and cooling / heating mode selector.

Fan speed control, regulation of the room temperature and cooling heating mode selection:

- manual setting of the fan speed;
- room temperature regulation both in cooling / heating mode, by means of fan start / stop, at a manually set temperature.

TDC - Wall mounted control with speed selector and thermostat

Wall mounted control panel complete with fan speed selector, electromechanical thermostat and cooling / heating mode selector.

Fan speed control, regulation of the room temperature and cooling / heating mode selection:

- manual setting of the fan speed;
- room temperature regulation both in cooling / heating mode, by means of fan start/stop, at a manually set temperature.

TD4T - Wall mounted control with speed selector, thermostat and summer-winter selector, for 2/4 pipe system with valves

Wall mounted control panel provided with fan speed selector, electromechanical thermostat, and cooling / heating mode

selector; if installed it controls regulating valves.

Fan speed control and regulation of the room temperature:

- manual setting of the operation fan speed;
- regulation of the room temperature for 2 and 4 pipe systems, both in heating and cooling mode, by means of fan start/stop at a manually set temperature and by means of opening and closing of the regulating valve.

12 ACCESSORIES

MYCOMFORT BASE - GALLETTI wall-mounted microprocessor control, model MYCOMFORT BASE, having the following main features:

- Room air temperature reading and adjustment
- Water temperature reading (water sensor as an optional)
- Manual and automatic adjustment of fan speed
- Manual and automatic switching of heating and cooling mode depending on the water temperature within the heat exchanger or on the

room temperature, with a neutral zone that can be selected in the range from 2° to 5°C.

The controller is equipped with a large display (3") to show and set all the functions of the unit.

Using the installation kit available, myComfort can be mounted on the unit

MYCOMFORT MEDIUM - GALLETTI wall-mounted microprocessor control, model MYCOMFORT MEDIUM, having the following main features :

- Room air temperature reading and adjustment
- Reading and adjustment of room humidity
- Water temperature reading (water sensor as an optional)
- Manual and automatic adjustment of fan speed
- Manual and automatic switching of heating and cooling mode depending on the water temperature within the heat exchanger or on the room temperature, with a neutral zone that can be selected in the range from 2° to 5°C.
- Serial port for Bus connection

The controller is equipped with a large display (3") to show and set all the functions of the unit.

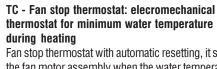
Using the installation kit available, myComfort can be mounted on the unit

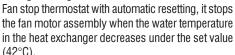
MYCOMFORT LARGE- GALLETTI wall-mounted microprocessor control, model MYCOMFORT LARGE, having the following main features :

- Room air temperature reading and adjustment
- Reading and adjustment of room humidity
- Water temperature reading (water sensor as an optional)
- Manual and automatic adjustment of fan speed
- Manual and automatic switching of heating and cooling mode depending on the water temperature within the heat exchanger or on the room temperature, with a neutral zone that can be selected in the range from 2° to 5°C.
- Clock and hourly timer-programmed operation
- 2 Analogue outputs for controlling modulating devices 0-10V
- 2 Digital outputs for controlling (On/Off) external devices (novoltage contacts)
- Serial port for Bus connection

The controller is equipped with a large display (3") to show and set all the functions of the unit.

Using the installation kit available, myComfort can be mounted on the unit

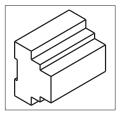

SW - Water temperature sensor for microprocessor controls model MYCOMFORT and LED503


Connected directly to the microprocessor control panel, this probe measures the water temperature inside the heat exchanger.

If the temperature registered is lower than 17°C the unit works in cooling mode and the temperature range of the

control panel will be referred to the cooling mode (19 / 31°C); if the temperature registered is higher than $\,37^{\circ}\text{C}$ the unit works in heating mode and the temperature range of the control panel will be referred to the heating mode (14 / 26°C).

If the temperature registered is between 17°C e 37°C the control panel will disable the aunitogreration.


Usefull only in the heating mode for installation on the finned pack of the heat exchanger.

IPM - Power interface for the connections to the control panels MYCOMFORT and LED503

The IPM power board permits to use MYCOMFORT and LED503 microprocessor-based control panels on the whole range of UTN air handling units, even for models with current consumation greayer than 1A.

The capacity of the IPM contacts is 16A, IP30 rating. The use of the IPM power board matched with the microprocessor controls is:

- compulsory for UTN 30, UTN 30A, UTN 40, UTN 40A.

SU - Humidity sensor for on-board microprocessor controls model MYCOMFORT MEDIUM and MYCOMFORT LARGE.

LED503 - Recess wall-mounted microprocessor control

The proposed microprocessor control panels for Galletti indoor units is completed by the LED503 command with LED display that is designed for recess wall mounting.

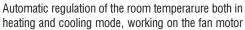
CONTROLLER

The control software developed by the Galletti Software Dept., features:

- Manual fan speed selection;
- Automatic selection of fan speed according to the difference between the set temperature and the room air temperature;
- Manual selection of heating/cooling operating mode;
- Automatic selection of heating/cooling operating mode;
- Control of 1 or 2 ON/OFF valves;
- Control of additional heating element;
- On board timer function to detect the actual ambient temperature;
- Reading of air ambient temperature, set point, fan speed and mode selection on the LED display.

12 ACCESSORIES

TA - Wall mounted room thermostat


Room thermostat for wall installation.

Automatic regulation of the room temperature:

- only in the heating mode working on the fan motor assembly and on the regulating valve, if installed (ON/ OFF operation):
- only in the cooling mode working on the fan motor assembly and on the regulating valve, if installed (ON/OFF operation);
- both in cooling and heating mode, with remote mode selection working on the fan motor assembly and on the regulating valve, if installed (ON/OFF operation).

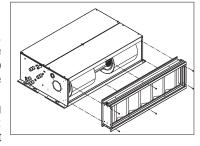
TA2 - Wall mounted room thermostat with summer/ winter selector

Wall mounted room thermostat with cooling / heating mode selector.

assembly and on the regulating valve if installed (ON/OFF operating).

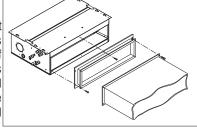
CSD - Wall mounted control for proportional opening and closing of the PA90 motorized louver

Designed for wall installation it allows the proportional opening and closing from 0 to 100% of the PA90 outdoor air intake motorized louver


MAF / MAFO - Air intake modules with filter

Made of galvanized steel sheet, these modules permit to filter the air sucked up by the unit and also to connect the unit to the intake channeling.

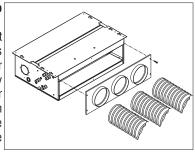
2 version are proposed depending on the guaranteed filtering degree: MAF: air intake module with flat filter made of acrylic material,


self-extinguishing in class 1, with filtering class G2.

MAFO: air intake module with corrugated filter made of acrylic fiber, self-extinguishing in class 1, with filtering EU4.

PCOC - Connecting panel to rectangular ducts

Manufactured in galvanised sheet steel, the PCOC connection panels are used for the connection of rectangular ducts with flanges and with other flanged accessories. They can be installed on both the intake and delivery line.



They are made up of a rectangular

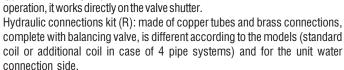
panel that is to be secured to the machine (or to another accessory with similar drilling, for example, MAF, MAFO, RE etc..) coupled to a flanged sleeve that represents the starting point for rectangular ducts of the type commonly used in distribution plants.

PCOF - Connecting panel to flexible ducts

Manufactured in galvanised sheet steel, the PCOF connection panels are used to connect to air distribution plants achieved by means of hoses or to other dedicated accessories. They can be installed on both the intake and delivery line (in this case the hose should be insulated).

They are made up of a rectangular panel that is to be secured to the machine or to another accessory with similar drilling (i.e. MAF, MAFO, RE etc..) complete with circular collars (Ø 200 mm) that represent the starting point for the hoses of the type commonly used in distribution plants.

Model UTN	06-06A	08-08A	12-12A	16-16A	22-22A	30-30A
n° of holes	2	2	3	4	4	5


V - M - R 3-way valve, on-off actuator and hydraulic connections kit

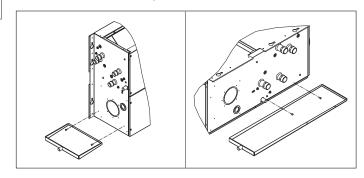
IThe system allows the regulation of the ambient temperature by stopping the water flow into the heat exchanger.

Available for 2 pipe and 4 pipe systems, the kit is made of the components below indicated: Valve body (V): 3-way with in-built by-pass (4 connections):

- 3/4" for the models UTN 6, UTN 6A, UTN 8, UTN 8A
- 1" for the models UTN 12, UTN 12A, UTN 16. UTN 16A

Actuator (M): normally closed, electrothermal type, 230V single phase, with ON-OFF operation it works directly on the valve shutter

The hydraulic connections kit is not available for the UTN22 - 22A and UTN30 - 30A units.


Auxiliary trays for collecting condensate, used for collecting any condensate that might form on the adjusting valves, the hydraulic unions and the holdfasts during the cooling operating mode.

The trays are made of galvanized metal sheet, with condensate discharge pipe (ϕ 17 mm) setup for being connected to a flexible rubber tube, like that which has been envisaged for the condensate discharge trays of the basic unit.

They are available for:

UTN units installed vertically, VRCV.

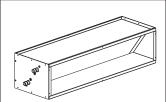
UTN units installed horizontally, VRCH.

12 ACCESSORIES

KSC - Condensate removal kit

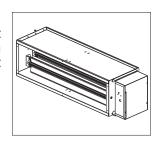
This device allows to overcome displacements in the condensate drain.

The pump can drain water up to 8 I/h and it is completed by a non return valve on the discharge side.

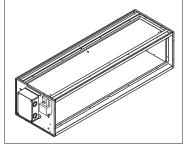

BP - Kit batterie di post riscaldamento

BP 1 or 2 row reheating exchangers are designed for installation on the air outlet of the UTN air conditioning and thermal ventilating units.

The BP module has holes like those on the machine air intake, on the extremity


turned toward the air outflow ducts. This allows you to attach all the accessories that can be directly applied on the machine (PCOC, PCOF, GAT, etc...).

RE - Supplementary heating elements


Useful as heating integration to the hot water system, the RE kit is made of an electric heater with safety thermostat (automatic and manual resetting) and power relay.

The RE electric heater kit has to be matched with the MICROPRO-D control panel and with the IPM power board.

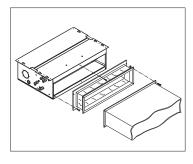
PA90 - Outdoor air inlet motorized louver

The outdoor air inlet motorized louvre is intended for replacing the air in the room directly from the air-handling unit. The amount of outdoor air that will be let into the room, after having been filtered and treated thermally, may be regulated proportionally from 0 to 100% by means of a servomotor controlled

by a rotary potentiometer that is inside the specific CSD control, which is designed for flush wall-mounting installations.

Kit PA90, as shown in figure (1), essentially comprises the following components:

A) Outdoor air inlet louvre made of galvanized steel sheet and setup for being connected to the machine, at one end, and to the other required accessories. B) Servomotor connected directly to the louvre's baffle, with a protection rating of IP54 and power supply of \sim 24V. The louvre may be opened or closed automatically at the signal of the external auxiliary contacts (not supplied) such as antifreeze thermostats, timers, etc., with the possibility of connecting multi-servomotors in parallel to an individual opening-closing control.


C) 230V - 24V voltage transformer, complete with support terminal strip housed inside the specific electrical box, which functions as a mechanical protection for preventing the access to the connecting terminal strip and to the transformer itself.

D) Self-threading fixing screws.

Manufactured in galvanized sheet steel, the GA/GAT connection panels are used to connect to rectangular ducts equipped with flanges and other flanged accessories.

They are made up of a rectangular panel that is to be secured to the machine or to another accessory with similar drilling (i.e. MAF,

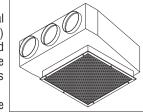
MAFO, RE etc...) coupled by means of a flexible bellow to a flanged sleeve that rapresents the starting point for rectangular ducts of the type commonly used in distribution plants.

If the vibration damping joint is used together with the electrical heating elements module (accessory RE) a GAT joint made of heat-resistant silicone material is to be fitted on the delivery line.

TFA - Not insulated flexible ducts

Uninsulated flexible duct for the connections to the air distribution with ϕ 200 mm diameter, supplied in 6 m lenght undivisible.

TFM - Insulated flexible ducts

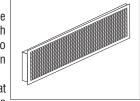

Insulated flexible duct for the connections to the air distribution with φ 200 mm diameter, supplied in 6 m lenght undivisible. The insulation of the duct is optained by means of fiberglass, thickness 25 mm with 16 Kg/m³ density.

TP - Plastic cap

Plastic cap ϕ 200 mm for the closing on the PCOF, of the air outlet not used.

CA / CAF - Air inlet plenum box

Intake Plenum box in galvanised sheet metal complete with circular collars (Ø 200 mm) for the connection, by means of hoses and intake grids with fixed fins, to pocket type structures, to increase the free air flow cross section.

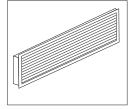


Sized to be adaptable to the modular structure of the ceiling panels, they are equipped with

2 or 3 circular collars so that they can be connected, following their suitable combination, to all the heater fans of the UTN range. The CA version is equipped with just the grid alone whereas the CAF version is also equipped with a flat filter in acrylic material, with filtering rating G2, housed in the standard frame. The filter of this second type of intake box can be serviced (cleaned) on a periodic basis without having to access the unit fitted behind the ceiling panels or in a service room.

GM - Alluminium air outlet grille

Air delivery grids with double row of adjustable fins in anodised aluminium, equipped with galvanised sheet metal frame that is used to wall-mount the grids or to fit them directly on the delivery head of the machine.



The galvanised sheet metal frame is drilled at one end so that it can be secured directly to

the delivery head of the heater fan (or to accessories such as the additional RE electrical module).

Air intake grids with single row of fins in anodised aluminium, equipped with galvanised sheet metal frame that is used to wall-mount the grids or to fit them directly on the intake head of the machine. The galvanised sheet metal frame is drilled at one

them directly on the intake head of the machine. The galvanised sheet metal frame is drilled at one end so that it can be secured directly to the intake head of the heater fan (or to accessories such as the MAF and MAFO filtering units).

13 MAINTENANCE

The maintenance operations for the UTN air conditioning and hot-air heating units are limited to the periodic cleaning of the air filter (provided on MA/F and MA/FO accessories) and the heat exchanger, and the checking of the working efficiency of the condensate discharge.

Only skilled personnel may perform the aforesaid maintenance.

Pay utmost attention during the maintenance operations: accidentally coming into touch with some of the metallic parts might cause injuries therefore wear safety work gloves.

Every time the units are started after long dwell times, make sure that air is NOT present inside the heat exchanger.

The motor is maintenance-free since it is equipped with self-lubricating bearings.

For safety reasons, before performing any maintenance or cleaning operations, turn off the equipment and cut voltage by turning the line switch.

40010 Bentivoglio (B0) Via Romagnoli, 12/a Tel. 051/8908111 Fax 051/8908122 www.galletti.it